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Variational principles in the linear theory of viscoelasticity*

by

M. E. Gurtin

Brown University

1. Introduction

The object of this paper is to supply generalizations to

linear quasi-static viscoelasticity theory of certain variational

principles which characterize the solution of the mixed boundary-

value problem of classical elastostatics. This problem consists

in finding a "state" - i.e. a displacement, strain, and stress

field - which satisfies the governing field equations in a given

region of space and meets the standard mixed boundary conditions.

The relevant field equations consist of the displacement-strain

relations, the stress-strain relations, and the stress equations

of equilibrium; whereas the boundary conditions involve the pre-

scription of displacements over a portion of the boundary and of

surface tractions over the remainder.

Two of the most important variational principles applica-

ble to the foregoing problem are the principle of stationary

potential energy1 and the principle of stationary complementary

energy. 1 The former asserts that the variation of the "potential

energy" over the set of all kinematically admissible states2 is

The results communicated in this paper were obtained in the
course of an investigation conducted under Contract Nonr-562(25)
of Brown University with the Office of Naval Research in
Washington, D. C.

1 See, for example, Sokolnikoff (l](Articles 107, 108). If the
elastic constants are such that the strain energy density is a
positive definite function of the strains then these variational
principles imply corresponding minimum principles.

2 By a klinematically admissible state we mean a state that
satisfies the displacement-strain relations, the stress-strain
relations, and the displacement boundary conditions.
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zero at a certain state if and only if that state is a solution

of the mixed problem under consideration.

On the other hand the principle of stationary complemen-

tary energy asserts that the variation of the "complementary

energy" over the set of all statically admissible stress fields3

is zero at a certain stress field if that stress field belongs to

the solution of the mixed problem. Southwell [21 and Langhaar [31

proved a converse of this theorem on the assumption that the trac-

tions are prescribed over the entire boundary and the region is

simply connected: the variation of the "complementary energy"

over the set of all statically admissible stress fields is zero

at a stress field only if that stress field belongs to the solution

of the problem at hand. For the case in which displacements are

prescribed over a portion of the boundary a similar converse

follows from a slight modification4 of a theorem due to Dorn and

Schild [4].

Various extensions of the preceding variational principles

of elastostatics have been established in which the class of

admissible states is subjected to weaker restrictions. One exten-

sion of this kind was given by Hellinger [5] and was later independ-

ently discovered in a somewhat stronger form by Reissner [6],[7].

3By a statically admissible stress field we mean a stress field
that meets the stress equations of equilibrium as well as the
traction boundary conditions.
See Section 4 for a statement and proof of the modified theorem.
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This principle asserts that the variation of a certain functional

over the set of all states which meet the strain-displacement

relations is zero at a particular state if and only if that state

is a solution of the mixed problem. Apparently guided by

Reissner's improved version of Hellinger's theorem, Hu Hai-chang

[8] and Washizu [9] separately arrived at a still broader varia-

tional principle which does not require the admissible states to

meet any of the field equations or boundary conditions.

This paper aims at variational principles for linear

viscoelasticity which generalize the foregoing results of classical

elastostatics. Although variational principles for viscoelasticity

theory were considered previously by Biot [10], Freudenthal and

Geiringer (11], and Onat (12], these investigations do not arrive

at generalizations of the type sought here.

The present paper is a continuation of a recent study

(13] which contains a systematic treatment of linear viscoelastic-:

ity theory based on the notion of a Stieltjes convolution.

Section 2 contains certain preliminary definitions and

notational agreements. In Section 3 variational principles

appropriate to the linear quasi-static theory of viscoelastic

solids are given for the case in which the stress-strain relations

are in relaxation integral form. Section 4 is devoted to the

derivation of analogous results for stress-strain relations in

creep integral form. In the variational principles established

here the viscoelastic solid is allowed to be inhomogeneous and

anisotropic and the relevant stress, strain, and displacement

histories are permitted to possess finite jump discontinuities in

time.
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2. Notation. Prelimina'; definitions.

Throughout what follows R will denote an open region of

three-dimensional Euclidean space with the closure I and the

boundary B. Further n will denote the unit outward normal to B

and Ba (a=l,2) will denote complementary subsets5 of B (B = B1U B2,

Bl B2 = 0). Finally, the symbol "X" will be used to indicate the

cartesian product of two sets.

Let uise,8jjdidjF Gi JkA and JiJkjo in this order,

designate the cartesian components of the displacement vector U,

the strain tensor e, the stress tensor d, the body force (density)

vector f, the relaxation tensor G, and the creep tensor J. All of

the preceding field histories, including G and J9, are to be

regarded as functions of position and time defined on Rx(-,cox).

With this notation the complete system of field equations in the

linear quasi-static theory of (inhomogeneous and anisotropic)

viscoelastic solids take the form
6

2e = ui, j + uJ i on Rx(-oo,oo), (2.1)

dj, i +F =0, = d on R(-co, o), (2.2)

and either

dij = G ijk*dsk0 on RX(- co, Go), (2.3)

or

ciJ = Ji Jkg*ddkg on RX(-oo,o o). (2.4)

5 Henceforth the subscript a will be understood to have the range
of the integers (1,2).

6 We use the usual indicial notation. Thus Latin subscripts have

the range of the integers (1,2,3) and summation over repeated
subscripts is implied; subscripts preceded by a comma indicate
differentiation with respect to the corresponding cartesian
coordinate.
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Equations (2.1) are the linearized strain-displacement relations,

(2.2) are the stress equations of equilibrium, (2.3) represent the

stress-strain relations in relaxation integral form, while (2.4)

represent the stress-strain relations in creep integral form. In

writing (2.3), (2.4) we have made use of the notation for Stieltjes

convolutions introduced previously in [13). Thus, if f and g are

functions of position and time, f*dg stands for the function

defined by the Stieltjes integral

[f*dg](x,t) = f (x,t-r)dg(x,), (2.5)

provided this integral is meaningful. To the system of field

equations Just cited we adjoin the initial conditions

u =s = d = 0 on R(-o, 0), (2.6)

the displacement boundary conditions

u = u on B.X( 0oo), (2.7)

and the traction boundary conditions

S = S on B2x(- o, o). (2.8)

In (2.8) S is the surface traction vector with components Si=dnj,

while u and A are prescribed functions.

The mixed boundary-value problem thus consists in finding

field histories u,_c,d which, for given RBa, known G [or J], and
prescribed F,,S, satisfy (2.1), (2.2), (2.3) [or (2.4)], (2.6),

(2.7), (2.8). We will let 3 =?(RBoUS,FG) denote the fore-

going problem for the case in which the stress-strain relations
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are in relaxation integral form - i.e. (2.3) holds. On the other

hand, if the stress-strain law is given in the creep integral

form (2.4), we will denote this problem by,= (R,BJuSF_ J)

In order to avoid repeated regularity assumptions con-

cerning the data we define a

Regular problem. We M that (R.. B is A e ias r

problem of relaxation tp if:

(a) R is a bounded region, its boundary B consists of a finite

number of non-intersecting closed regular surfaces, and

the subsets Ba are regular surfaces;

(b) (i) u is a vector-valued function defined on BlX(-oo, co)

which vanishes on Blx(-oO) and is uniformly continuous

on 1 X[O, J] (o < - < o);

(ii) S is a vector-valued function defined on B2 X(-oo, oo)

which vanishes on B2x(-oo,O) and is uniformly continuous

on B2 x[O, ] (0 < r < oo) for every regular surface element

B2 CB 2 ;

(iii) F is a vector-valued function defined on Rx(-oo,oo)

which vanishes on Rx(-oo,O) and is uniformly continuous
on Rx[0O,-r] (0 < c < o) .

(c) G is a fourth-order tensor-valued function (of position

and time) defined on Th(-o,o) which vanishes on lb(-o,0),

is continuously differentiable on ThC[0, oo), and has the

symmetry properties
Gij = Gojjl - = on Rx(-ooo). (2.9)

See Kellogg [14] for the definition of a closed regular
surface and the definition of a regular surface element.
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We~ ~ 0 1q Uha #~uiiRB~~!j) 1sa reitular Problem or creep

W if (a),(b),(c) hold with G replaced £ 3.

Condition (i) in (b) is equivalent to the requirement

that u_ coincide on B1X[O]J with a function continuous on the

closure of B1X[O, ). The analogous comment applies to (iii) in

(b). If S is the prescribed boundary traction of a problem and

d is the stress tensor of the corresponding solution then
= d0,n, on B2x[O, oo). This motivates condition (ii) in (b)

since n has finite jump discontinuities on B2, but not on any

regular surface element B2 CE2 .

The first of the symmetry relations appearing in (2.9)

is a direct consequence of the symmetry of the stress tensor.

The second of (2.9), for the special case of an isotropic solid,

follows automatically from the condition that the values of G

be isotropic. For the general anisotropic solid this second

symmetry relation constitutes an independent assumption.
8

Our main objective is the characterization of the

solution to the foregoing boundary-value problem by means of

variational principles. It thus becomes essential to spell out

precisely what we mean by a regular solution to the problem. To

this end we first give the following definition of an

Admissible state. We say that the ordered array = [U,_,c_] is an

admissible state on x(- 00, co) if:

Theoretical support for this assumption has occasionally been
based on thermodynamic arguments involving an appeal to
Onsager's principle. See Rogers and Pipkin (15J for a
discussion of this issue.
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(a) u is a vector-valued function defined on Nx(- oo, oo), while

&and~j are symmetric second-order tensor-valued functions

defined on lx(.oo, oo);

(b) u,qd_ vanish on x(-oo,O) and are continuously differentiable

on Rx(o,oo).

Note that an admissible state is allowed to have finite

Jump discontinuities at the time origin and need not meet (2.1),

(2.2),(2.3), or (2.4). Addition of states and multiplication of

a state by a scalar are defined by

~~~~~a -~ [u[~~-ic+Jc~ au,asEcad] (2.10)

In view of (2.10) the set of all admissible states on Thx(-oo, 0o)

is a linear space.
9

We are now ready to introduce the notion of a

Regular solution. Let ( R B,,S,f,G) be a regular problem

of relaxation tye Then we say that regular

solution of ? if:

(a) S is an admissible state on 'RX(- oo, oo);

(b) u,_,_ meet the field equations (2.1),(2.2),(2.3) and

satisfy the boundary conditions (2.7),(2.8).

Le__t = (R,Bu_,4_EJ) be a regular problem of creep type.

Then we say that =[u,_,dJ is a regular solution of9 if (a),

(b) hold with (2.3) replaced by (2.4).

9 See, for example, Taylor [16] for the definition of a linear
space.
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Clearly a regular solution is allowed to possess finite Jump

discontinuities at time zero.

Next we define the

Variation of a functional. Let Q{-) be a functional defined on

a subset K of a linear space L. Let

SL , +)4q-K for every real number a , (2.11)

and formally define the notation

bj(8 ~[d ~ Ia (2.12)

We say that the variation of Qf.) is zero at and write

bQQ42 = 0 over K (2.13)

whenever bQUI exists and equals zero for every choice of

consistent with (2.11).

Unless otherwise specified, the underlying linear space

L for the variational principles proved in this paper will be

the set of all admissible states on ]x(-co,oo).

Finally, we will consistently write S and S for the

traction vectors with components

S= diana Si = ;,jnj (2.14)

respectively.
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3. Variational principles for problems of relaxation type.

We begin with a generalization of the theorem due to

the Hu Hai-chang [8] and Washizu [9] mentioned previously.

First variational principle. Let 2= (RBu,,FG) be a

regular problem of relaxation type. Let K be the set of all

admissible states on Kx( - 0, o). Let = [u,,d] K and for

each fixed t E (-co, co) define the functional A on K through

AJt =~ 2' [ijk*deiS*dekg](Ajt)dVx 1, 1 deii J(A.t)dVx

" f [ ( d ij J+PL)*dui](xt)dVx + f  iS *duil](,t)dAx

R ~B,

+ f [(Si Si)*duij(xt)dAx " (3-1)10

B2

Then

bAt() = 0 over K (co < t < co) (3.2)

if and only If is a refmlar solution of 9-.
Proof: LetA = [Zi;,;]C K from which it follows that +4 A K.

Then by (2.12), (2.9), Theorems 1.2 and 1.6 of 113], and the

symetry of j

1OWe write dVx and dAx for the volume element and element of
area, respectively, -to indicate that x is the variable of
integration.
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6At S f [(Gi dkr*d -d )*d-e ](xt)dVx +

f [ a,o +Fi) li ](2j( t)dVx +R

f [i j 4(u ,a+uj ))*d ij](2xot)dv +

+ [(ti -uL)*dl](_xt)dAx +
1

+ f [(Si-Si)*dii](xt)dAx (00 < t < 0o). (3.3)

First suppose , is a solution of . Then by virtue of (2.1),

(2.2),(2.3),(2.7),(2.8), equation (3.3) becomes

0 over K (-oo< t< oo). (3.4)

Equation (3.2) now follows from (3.4) since E K was chosen

arbitrarily.

Now turn to the "only if" portion of the proof. We

must show that is a regular solution of whenever SK and

(3.4) holds for every2E K. In particular choose

,U(xt) = u'(x)h(t), j(At) = '(x)h(t), a(_it) = I I(x)h(t)(3.5)

for every (xt)E]7x(-oooo), where h is the Heaviside unit step

function, i.e. h(t) = 0 (-o < t < 0), h(t) = 1 (0 e t < oo).

Therefore (3.4), by virtue of (3.3) and Theorem 1.2 in (131,

becomes
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f [Gijkg*dek.-djj](x,t)clj(x)dVx I f d±,j+F±J(Xt.t)u'(2)dVx +
R R

- [ eij 4(ul~a+u J.' ) ( t) C;iaj(A~)dV, +

+ £ [-uJ](xt)jsj(x)nj(x)dAx +
BB1

+ S S-1(xt )ui(M)dAX = 0 (-00< t < o0) (3.6)
B2

I I I

and (3.6) must hold for every u ,I ,d continuously differentiable

on R with e and d symmetric. But this fact, the fundamental

lemma of the calculus of variations, and the symmetries of

__,G imply that S meets (2.l),(2.2),(2.3),(2.8) and that

^[Ui-uil(x,t)cSj(x)n (x)dAX = 0 ( 00< t < co). (3.7)

Now assume there exists a regular point x0 B1 such that

u(x°,t) j(x°',t) which implies uk(X°,t) y G(x°,t) for some

(fixed) k. Choose the coordinate frame such that nk(x_) 0,

let f be continuously differentiable on R, and let

(ij(x) = bi jkf(x) (no sum). Then, since (3.7) must hold for

every such d', [uk(_ t) - 3(xt)Jnk(x) = 0 (no sum) for every

(xt)C Blx(oo, oo) with x regular, which implies uk(X°,t) =

AOt). Consequently we have a contradiction and hence

u(x,t) = ^(x,t) for every (x,t)9 BlX(-oo, co) with x regular.

Thus and by the continuity of u and _u, (2.7) holds as well and

is a solution of 9. This completes the proof.
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By virtue of the divergence theorem, At admits the

alternative representation

At]=: Gj Ld j*dek1](AXit dVx - f( d( ]Itdx

j [F *duj](xt)dVx - B [S *d(u _ui ) JdAx +
R -- B 1  --i

- J [ i*du ](xot)dAx • (3.8)

B
2 (

If, in addition to merely being admissible, , = [u, _,d meets

(2.l),(2.3), and (2.7), thenAtM given by (3.8) reduces 
to

OP . where

OtV) 1 fJ (G jk*d~j*deig](j~t)dvx - f [Fi*dul)](i,t)dVx +

R2 R R

- J ESi*dui ](Et)dAx  (3.9)

B2

Thus we are led to the following generalization of the principle

of stationary potential energy.

Second variational principle. Let = (RBaj,_,?,.q_) .e a

regular problem of relaxation type. Let K be the set of all

admissible states on x(_oo,oo) which meet the strain-displace-

ment relations (2.1), the stress-strain relations 
(2.3), as

well as the displacement boundary conditions (2.7). 
Let

= [= , , ]E K and for each fixed t E(-oo, co) define the func-

tionalDtf'I on K through (3.9). Then

O =o over K (-oo< t < oo) (3.10)

if and on If Is I regular solution of
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Proof: The "if" portion of the proof follows at once from the

first variational principle and the discussion preceding (3.9).

To establish the remainder of the theorem assume

= 0 over K (-co < t < cc) (3.11)

for every which meets (2.11).ii This latter condition is

equivalent to the requirement thatj be admissible and meet

(2.1),(2.3), with

= 0 on BiX(-o, 00). (3.12)

Clearly, (3.3) holds if we replace Atf ) by Dt (} and omit the

first, third, and fourth terms, since /<, meets (2.1),(2.3),

(2.7). Now choose i_(x,t) = u'(x)h(t) for every (xt) in

Ro(-oo, o), where h is the Heaviside unit step function and u'

is twice continuously differentiable on R, with

u = 0 on B1 . (3.13)

Next define continuously differentiable functions 'a_ on R

through (2.1),(2.3). Thus and by (3.11),

ho + (.t)ui(A)dVx + f [Si-5§i_.tu'(~~ = 0o_ ] sii(x,t)ui(x)dA_

B2  < t <c0)(3.14)

for every function u with the foregoing properties. But this

fact, by virtue of the fundamental lemma of the calculus of

variations, implies that meets (2.2),(2.8) and the proof is

complete.

11 Recall our agreement that L is the set of all admissible

states on 'Rx(- oo, oo).
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4. Variational principles for problems of creep type.

The following theorem is a generalization of the

Hellinger-Reissner principle in linear elastostatics.
Third variational principle. Let = S,

regular problem of creep type. Let K be the set of all admissible

states on lx(-co, oo) which meet the strain-displacement relations

(2.1). Let [ 3 u, e,_q dJK and for each fixed tC(- ooo) define

the functional st{. on K througheJSi I[(dik .dij](,c~t dVx-t~d[

f2R I i*de j(t)d -*dd*dI (t)dV

-f [i*du](xt)dV.x- I [Si*d(ui-.i)](x,t)dAx
R B B1

IS i *dui](--xAt)dAx " (4.1)
2

Then

be t [). = 0 over K (- oo < t < co) (4.2)

if and only if is a regular solution of

Proof: Let2 = [_,_j. meet (2.11).12 Then from the definition

of K and since J K, we have thatYj E7 K. Consequently, because

of Theorems 1.2 and 1.6 of [131,

b- lJJJ*ddk.)*d~ij]( -dVb~~L~)R [(eis~k

- d [ijJ+Fi)*dui](xt)dVx + f [Si*d(u -ui)](xt)dAxR B, i-

+ f E(Si-Si)*du ](Ist)dAx  (- 0o< t < cc). (4.3)
B 2 S

12 See the previous footnote.
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The conclusion now follows from (4.3) by an argument which is

strictly analogous to that which led from (3.3) to the final

conclusion in the proof of the first variational principle.

We turn next to a generalization of the principle of

stationary complementary energy in elastostatics. With a view

toward an economical statement of this generalized principle we

introduce the subsequent notions.

Convexity of R with respect to B.. We say that R is convex with

respect to B1 if the straight line

- +  00 < 'T<0)

intersects B only at x and _x whenever x, x B1.

Notice that if B = B2 then R is automatically convex with

respect to B1.

Admissible stress field. We say that d is an admissible stress

field on ]X (- 00 coo) if I is a synmmetric second-order tensor-

valued function defined on x(- co, co), which vanishes on

]x(-00,0) and is contirously differentiable on x[O, co).

Finally, we stipulate that the underlying linear space

L for the following theorem is the set of all admissible stress

fields on gx(- o, co).
Fourth variational principle. Let AuJ) b a

reular problem of creep type. Let K be the set of all admissible

stress-fields on Rx(-oo o) which meet the stress eauations of

eauilibrium (2.2) and the traction boundary conditions (2.8).

Lot C K and for each fixed t E (- o, co) define the functional

t 3 on K through
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j *ddjj*ddk](xot)dV f [Si±(xt)dA (4-5)
2R - B1  x

Then

5 t[P = 0 over K (-00 < t < oo) (4.6)

if there exist functions u,_ such that [ud,II] is a regular

solution of 9.
Conversely, suppose

(a) R is convex with respect to B.;

(b) R is simply-connected;

(c) J and d are twice continuously differentiable on ]x[O, co);

(d) _u(x,.), for each x EB, is continuously differentiable on

[o, 00);

(e) (4.6) holds.

Then there exist functions u,_ such that u,sd] is a r

solution of

Proof: Let d( L, I+aa CK for every real a. Then

dcia =0 on R- oo, o),

S *; ,n, =0 on B2 x(-oooo).

Further, since Jijk- = k~ij- it follows that

b-'t } = [ Jijkg*d~kSd;,Jj(xSit)dVx - f [5 *d~i](xt)dAx

(- o < t <oo)(4.8)

Now suppose there exist functions u and e such that [uId] is

a solution of '. Then, by virtue of (4.7) and the divergence

theore, equation (4.8) implies
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b~q~t d = 0 (- 00< t < oo). (.9)

Thus, and since d was chosen arbitrarily, (4.6) holds.

We turn next to the proof of the converse assertion.

To this end we state and prove the following trivial modification

of a theorem due to Dorn and Schild [4].

Lemma. Let R be simply-conmected and convex with respect to B1 .

Let ut be a vector-valued function which is uniformly continuous

on B1 and let e be a symmetric second-order tensor-valued func-

tion which is twice continuously differentiable on ]. Further

suppose

R dij(x)sij(x)dAx = f dij(2)^i(x)nj(x)dAx  (4.10)

R -- B1

for every symmetric second-order tensor-valued function d which

is continuously differentiable arbitrarily often on 11 and meets

d =jj,0 onR (411
iaj, a a

61n j = 0 on B 2

Then there exists a vector-valued function u which is continuous-

IZ differentiable on 1 and satisfies

2eij = ui, 3 +uJ,1  on R (4.12)
ui =i on B1  J

Proof: Here we follow the argument of Dorn and Schild. Let.&

be a symmetric second-order tensor-valued function which is

continuously differentiable arbitrarily often on IT and which

vanishes identically outside a closed subregion of R. Let YIJk
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denote the usual alternating symbol and define 6 through

dij = ipqyjrsgpr, qs on R, (4.13)

i.e. use E as a Gwyther-Pinzi stress function.13 This choice

of d meets (4.11), has the requisite degree of smoothness, and

vanishes on B. Therefore (4.10) implies

f ijyipqyjrsgpr,qs dV = 0 . (4.14)
R

Now integrate (4.14) twice by parts and use the fact that I and

all of its partial derivatives vanish on B to deduce that

I(Yipqyjrs'ij,qs)gprdV = 0 . (4.15)

Since (4.15) must hold for every such function .

T piqyrjsij,qs = 0 on R . (4.16)

Hence e is a compatible strain field and from the simple-

connectivity of R we conclude that there existsa vector-valued
!

function u which is continuously differentiable on ]1 and meets

2e = u I + u I on R (4.17)

Moreover, such a u is given by the line integrals14

i(x)= fx Uij(Lx)d j for every x4] , (4.18)

where A_° R and for every (1,x) E x"

13 See, for instance, Truesdell and Toupin [17] (Article 227).

14 See, for example, Sokolnikoff (1] (Article 10).
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u j([o2) = eij() + (xkk)[,ijk(-) - ekjji(D]. (1.19)

Now let

Vi0 U - U on B1  (4.20)

and use (4.l0),(4.l),(4.l2), together with the divergence

theorem, to establish that

f (5 n v dA = 0 (41.21)

Our next step will be to show that v is a rigid displace-

ment field. To this end let x and x be arbitrary interior points

of B1 and choose the coordinate system such that

x (oooo) $ _ = (Ooos 3). (4.22)

Let ]j be a disc in the Xl,2-plane with radius e and center at

x1 = x2 = 0 and let

,j(xl,x2=,x3 b & 3 f,(xl x2 ), (4.23)

where f. is defined on the entire xl,x2 -plane and has the

following properties:

(a) fe is differentiable arbitrarily often;
(b) fp > 0; 

(.4

(c) fe = 0 outside D.;

(d) "e fe dA " 1 . j
Clearly such a d meets the first of (4.11). Now let C. be the

solid circular cylinder whose axis coincides with the x3-axis

and whose cross-section is De. By the assumed convexity of R
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with respect to B1

(cflB)CB1 , (4.25)

for sufficiently small e (say 6 < e0). Thus and by (4.23),

(4.24), the second of (4.11) holds for e < e0. Further for

e < el <0 there exist disjoint subregions 0, U3 of B1 such

that

x C Cf lB (4.26)

Consequently, by virtue of (4.23), (4.24c), equation (4.21)

reduces to

fv 3n3dA + f f.v 3 n 3 dA - 0 (e < 8i). (4.27)

Next let m = (0,0,1) be the unit normal vector of D. and conclude

from (4.23), (4.24d) that

Sf~n 3 dA = f ijnjdA = D ijmjdA= fedA = I

e d a D i D (4.28)

L f n dA -fd ,~n~dA = d m d~mdA = - f,,dA =-1

provided e < Ei. Now let e-4 0 in (4.27) and use (4.24b),

(4.28) to infer that

v3(X) - V3() = 0. (4.29)

But (4.29), because of (4.22) and since x, _x were chosen

arbitrarily, implies

[v(_ ) - xx)3._-xJ 0 (4.30)

for every -., x B1 . Hence v on B1 must belong to the moment

field of a bound vector system and thus admits the representa-

tion
15

15 See, for example, Nielsen (18] (Chapter 3).
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vi(XW = ai+tljxj (aijiJ = -wJ ..... constant) (4.31)

for x(B I . Now define u on R through

ui(X) = ui(X) + a. + wjxj if x( (4.32)

and conclude from (4.17), (4.20), (4.31) that u meets (4.12).

This completes the proof of the lemma.

We turn now to the remainder of the proof of the

fourth variational principle. To this end suppose hypotheses

(a) through (e) hold. Clearly, (4.8) is satisfied by every

admissible stress field ; which meets (4.7). In particular let

ijxt ) = dj(x)h(t) for every (x,t) E ] ×(-oo, o). (4.33)

Next define e on ]x(- o, co) through

EiJ = iJk*d~k8 (4.34)

and observe that hypothesis (c) and Theorem 1.6 of [13] imply

that e vanishes on IX(- oO) and is twice continuously differ-

entiable on T]x[O, oo). Further, infer from (4.6), (4.8), (4.33),

(4.34) that

(2x)eij(4.t)dVx f ' 3j(x)uii(xt)nj(x)dAx (- o o < t < o4(4.3j

for every P' which is twice continuously differentiable onR

and meets
di, = 0 on R ,

io (4.36)
ijn j -0 on B2.
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Equations (4.35), (4.36), together with the preceding lemma

imply the existence of a displacement field u which satisfies

(2.1), (2.7). Moreover, it is clear from the smoothness of e_,

hypothesis (d), and the proof of the lemma that u vanishes on

RX(-oo,O), and is continuously differentiable onRx[O,oo). Thus

we have shown that [ua,,o] is a regular solution of ?'and the

proof is complete.
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